deuteride

n.  氘化物

化学



双语例句

  1. Kinetic Isotope Effects of Desorption for Zirconium Deuteride and Tritide
    氘/氚化锆热解吸动力学同位素效应
  2. The kinetics of reaction of lithium deuteride powder with O_2, CO_2 and water vapor is ( studied.)
    研究了28℃下,氘化锂粉末与O2,CO2和水汽的反应动力学。
  3. Result shows that deuterium is uniform in titanium deuteride which is chemisorbed.
    结果表明,在以化学形式存在的TiDx/Mo样品中氘均匀分布。
  4. EXAFS investigation on microstructure of La-based alloy deuteride
    镧基合金氘化物微观结构的EXAFS测量
  5. Determination of Variation Mathematic Model of Tritium in Lithium Deuteride-tritide
    氢化锂含氚量变化之数学模型的测定
  6. Phase Structures and the Thermal Desorption Behavior of Zr_3V_3OD_x Deuteride
    Zr3V3ODx氘化物物相及其热解析行为研究
  7. The reaction process with water vapor could be described using the unreacted shrinking core model. The second-order kinetics is appropriate for the chemical reaction on the surface of lithium deuteride and reaction rate constant is 0.281 kPa~ (-1)· min~ (-1).
    室温下氘化锂与水汽的反应可用收缩未反应芯模型来描述,界面化学反应为二级反应,反应速率常数为0281kPa-1·min-1。
  8. Research on the Kinetics Isotope Effects of Titanium Hydride and Titanium Deuteride Desorbed
    氢/氘化钛热解吸的动力学同位素效应
  9. Absorption velocity increases with initial pressure, and keeps constant at different initial composition of uranium deuteride.
    增加混合气体的初始压力有利于铀吸氘速率的增加,氘化铀的初始氘量不影响铀的吸氘速率。
  10. It consists of a copper cylinder as the cathode base filled with titanium deuteride powder in the cavity of the cathode base as a sputter target material.
    它由1个圆柱形的铜阴极心和填满其中心孔的氘化钛溅射靶构成。
  11. Influence of Helium on Deuterium Absorption by Unsaturated Uranium Deuteride
    氦对不饱和氘化铀吸氘行为的影响
  12. Preparation of titanium deuteride cathode
    氘化钛阴极的制备
  13. Study of Kinetics of Reaction of Lithium Deuteride Powder With O_2, CO_2 and Water Vapor
    氘化锂粉末与O2,CO2和水汽的反应动力学研究
  14. Distributions of difference in temperature between the gas and the solid, composition and density of deuteride were gained. Influence of thermal conductivity of deuteride on the difference was discussed, and validity of the mathematical model experimentally tested.
    计算了金属氘化物在去氘化过程中气固相温差、组分和密度的分布,以及热导率和加热流体温度对气固相温差的影响,并考察了模型的适用性。
  15. XRD and TG-DSC Analysis of Zirconium Deuteride
    氘化锆的XRD与TG-DSC分析
  16. For the sources of negative ions by cesium sputtering ( SNICS) in the tandem accelerator to produce negative deuterium ions, a titanium deuteride cathode is prepared.
    根据串列加速器中铯溅射负离子源(SourcesofNegativeIonsbyCesiumSputtering,SNICS)产生负氘离子的要求,制备了一种氘化钛阴极。
  17. Deuterium diffusion and surface recombination behaviour in titanium deuteride
    氘化钛中氘扩散和表面复合行为研究
  18. A Method for Determing Total Oxygen in Lithium Hydride ( Deuteride) by Pulse Melt-Gas Chromatography
    脉冲熔融-气相色谱法测定氢(氘)化锂中的总氧量
  19. Study of recovering deuterium from flowing uranium deuteride bed at room temperature
    流通式氘化铀床室温回收氘的研究
  20. Distributions of composition and density of deuteride maintain links with the difference.
    金属氘化物中组分和密度的分布与气固相温差有关;
  21. A two-dimensional model characterizing heat and mass transfer during desorption in a LaNi 4.7 Al 0.3 deuterium reactor was established by taking into account difference in temperature between the gas and the solid and variation of density and specific heat of the deuteride.
    建立了LaNi4.7Al0.3Dx去氘化过程中热、质传输的二维数学模型,该模型考虑了气相和固相之间存在的温差以及氘化物密度和比热的变化。
  22. With the prepared titanium deuteride cathode, the ion source can produce several μ A to more than 10 μ A of negative deuterium ions in the tandem accelerator.
    用这种氘化钛阴极,离子源可产生几μA至十几μA的负氘离子。
  23. Recovering deuterium from uranium deuteride bed by means of the isotopic exchange reaction between the solid and gas phases at room temperature is introduced.
    研究了氢气经过流通式氘化铀床,利用气-固相之间的同位素交换反应回收床中的氘。
  24. A method for determing total oxygen in the lithium hydride ( deuteride) by pulse melt helium atmosphere carryover and GC thermal conductivity are described.
    描述了脉冲熔融,氦气载带,气相色谱热导检测法测定氢(氘)化锂中总氧量的研究成果。
  25. The rate constants of titanium hydride desorbing hydrogen and titanium deuteride desorbing deuterium on different temperature are determined and the activation energy value obtained by this method are 27.1 ± 0.4 kJ/ mol and 42.3 ± 1.9 kJ/ mol respectively.
    应用反应速率分析方法计算了各自在不同温度下的反应速率常数,得到氢化钛和氘化钛热解吸的表观活化能分别为27.1±0.4和42.3±1.9kJ/mol。