A fixed point theorem for set-valued mapping in H-space H-空间中集值映象的不动点定理
In this paper, a new result of Ky-Fan minimax theorem be obtained in Cartesian product H-space. 文章证明了Caresian乘积H-空间的一个新结果,并应用于ky-Fan极大极小定理的推广。
Some Variational Inequalities on H-space H-空间中的一些变分不等式
In chapter three, firstly, we introduce some important concepts about H-space. 第三章,首先,介绍了H-空间中一些重要的概念。
As application, these results are utilized to study the existence problems of fixed point and nearest point in H-space. 作为应用,研究了H-空间中最近点和不动点的存在性问题,将张(1999)的结果推广到H-空间中。
In chapter four, we consider a more general form of generalized nonlinear variational inclusions and prove the existence of solutions for these variational inclusions in H-space. 在第四章中,我们考虑了一类更一般形式的广义非线性变分包含并证明了它在H-空间中解的存在性。
In this paper, new minimax inequalities are obtained on H-space, and also obtained their equivalent forms, geometric forms and existence theorem of maximal element'As applications of these theorems, we deduce some fixed point theorems. 本文在H-空间得到一个新的minimax不等式,并得到了与其等价的几何形式、极大元存在定理及作为其应用的不动点定理。
Browder's fixed point theorem and its application for H-space H&空间中Browder不动点定理及应用